If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7z^2+12z+5=0
a = 7; b = 12; c = +5;
Δ = b2-4ac
Δ = 122-4·7·5
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2}{2*7}=\frac{-14}{14} =-1 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2}{2*7}=\frac{-10}{14} =-5/7 $
| 5/6t+7/8t=164 | | 7=2(x | | h^2+2h-15=0 | | 5/6x+1/4=-3 | | 4=12b+8/b+24 | | 8x=16/28 | | u+11/3=5 | | 9-2x+2X=2x+3 | | 4-(1/6)x=(5/2) | | 9x+12=-15 | | -3(6x-7)=-18x-21 | | 3•x=3.5 | | 3|5-(3)/(2)x|+12=24 | | 18b+20=20 | | X+.6×2+x×2=x+.1×2+2x×2 | | 0.35p-1.5=16 | | 31-8x=14+9x | | 3x-1+x=7 | | 16j^2-25=0 | | -8=7x-3 | | |x|+9=48 | | 4(-4+r)=4(r-4) | | 6.17-13.8j-13.14=-12.91-14.7j | | 6g+2=5g-17 | | -10(n+10)=20 | | x-3(5-3x)=10x+8-3x-4 | | q^2+16q+64=0 | | 31-8x=15+9x | | -18x+9=243 | | -3(3-x)=-48 | | 7(7x-5)-9(3-8x)+8(-7x+8)=-2(8-5x) | | (4x+9)^2-49=0 |